Zhiyu Wu Zhiyuwu2@illinois.edu • https://xzzwzy.github.io/ • 7345968166 • Urbana, IL

EDUCATION

University of Illinois Urbana-Champaign

M.S. Computer Science GPA: 3.80 / 4.00 University of Michigan B.S.E. Computer Engineering (Dual Degree) Shanghai Jiao Tong University B.S.E. Electrical and Computer Engineering (Dual Degree)

Research Interest: LLMs, ML system infrastructure, LLM systems Coursework: Computer Architecture, Operating Systems, Computer Network, Machine Learning, Embedded Systems

RESEARCH EXPERIENCE

Research Assistant in GAEA Lab

Supervisor: Fan Lai

- Classify LLM serving requests into three categories based on unique system objectives:
 - Latency-Intensive: For streaming use case, ensuring fluent reading experience.
 - Throughput-Intensive: Only focus on the job completion time (JCT).
 - Bulk Requests: Large groups of requests submitted together, with collective completion time as the priority.
- Define Service Level Objectives (SLO) for each request type:
 - Latency-Intensive: SLO based on Quality of Experience (QoE).
 - Throughput-Intensive: Extended deadlines, calculated as the time it runs alone on the machine multiplied by a scaling ratio.
 - Bulk Requests: SLO based on the deadline of the last request in the group.
- Develop an SLO-aware scheduling policy using length prediction to optimize job completion time (JCT) and improve user experience in LLM inference.
 - The policy combines DAG scheduling and two-dimensional knapsack scheduling, ensuring efficient resource allocation to meet SLOs across different request types.

Research Assistant in Symbiotic Lab

Supervisor: Mosharaf Chowdhury

- Identified that in LLM text-streaming services, systems must generate faster than user reading speed to enhance user experience, addressing gaps in previous metrics.
- Defined Quality of Experience (QoE) in LLM serving by tracking each step of text generation and monitoring the overall user experience throughout the entire streaming process.
- Formulated the problem as a knapsack optimization and developed a scheduling algorithm to maximize QoE in online LLM serving.
- Built Andes, an LLM serving system on top of vLLM, integrating the scheduling algorithm to enhance QoE in realtime LLM services.
- Co-authored the paper "Andes: Defining and Enhancing Quality-of-Experience in LLM-Based Text Streaming Services" as the second author.

PUBLICATIONS

• <u>Andes: Defining and Enhancing Quality-of-Experience in LLM-Based Text Streaming Services</u>; Preprint, 2024; Jiachen Liu, **Zhiyu Wu**, Jae-Won Chung, Fan Lai, Myungjin Lee, Mosharaf Chowdhury

PROJECT EXPERIENCE

Symbiotic Lab/ML.ENERGY.LEADERBOARD Team Developer

Ann Arbor, MI *May 2023 – Sept. 2023*

Ann Arbor, MI

May 2023 – *April* 2024

Ann Arbor, MI August 2022 – May 2024

Champaign, IL

Champaign, IL

July 2024 - present

Expected May 2026

Shanghai, China Sept. 2020 – August 2024

- Developed the ML.ENERGY Leaderboard, an open-source platform for benchmarking the energy efficiency and NLP performance of LLM models.
- Defined performance metrics and implemented scripts for optimized batched inference to ensure accurate measurement.
- Contributed to the online Chatbot Arena which gathers data on models' energy consumption and performance.

Toy Operating System

.

- Created a toy operating system with physical memory and disk management.
- Implemented read-write locks using mutexes to manage multi-threading.
- Developed virtual memory management with a page table and a network file server using sockets.
- Built a custom file system for networked access.

Out-of-order Execution Pipeline for the MIPS R10K Microprocessor

- Developed an out-of-order execution pipeline with six stages on the MIPS R10K microprocessor.
- Implemented key components including register renaming, reservation station, reorder buffer, and a common data bus for enhanced parallelism.
- Applied Tomasulo's algorithm for dynamic scheduling and reducing pipeline stalls.
- Added a Load Store Queue and a Branch Target Buffer to further optimize execution efficiency and improve instruction throughput.

Video Streaming via CDN

- Developed a proxy server for handling video streaming across multiple clients and servers, ensuring scalability and reliability.
- Implemented adaptive bitrate streaming to minimize buffering and enhance user experience based on real-time network conditions.
- Used DNS load balancing with round-robin and distance-based server selection, utilizing Dijkstra's algorithm to optimize server choices based on proximity and load.

Static Router

- Built a static router with basic packet forwarding capabilities to route real packets to HTTP servers.
- Implemented layer 2 and layer 3 protocols, including ARP, ICMP, and Ethernet, for routing and handling network traffic.

Embedded Device for Keystroke Timing and Acoustic Attack Protection

- Designed the device to intercept keystrokes and introduce random delays before sending to the PC.
- Implemented keystroke sound playback to counter acoustic attacks using recorded sounds.
- Based the system on the STM32F405 microcontroller with Embedded Rust for secure and efficient performance.
- Delivered a compact, user-friendly design with production costs around \$24.50 per unit.
- Utilized SD card for storing custom keystroke sounds and USB peripherals for communication with keyboard and host PC.

PROFESSIONAL SERVICE

• VP 160 Honors Physics SJTU, 2022 Summer

SKILLS

Computer: C++, C, Python, Rust, Pytorch, CUDA, System Verilog, Embedded C/Rust, Linux, MATLAB, Git, LaTeX

HONORS

Dean List, Umich	2023
University Honor, Umich	2022
Tang Junyuan Scholarship, SJTU	2022
SJTU Undergraduate Excellent Scholarship Class B, SJTU	2022

Ann Arbor, MI

Ann Arbor, MI

Shanghai, China

Ann Arbor, MI

Ann Arbor, MI